Bilateral Approach to the Secretary Problem

David Ramsey
Institute of Mathematics
Wrocław University of Technology
50-370 Wrocław, Poland
ramsey@im.pwr.wroc.pl

Krzysztof Szajowski
Institute of Mathematics
Wrocław University of Technology
50-370 Wrocław, Poland
szajow@im.pwr.wroc.pl

Abstract

A mathematical model of competitive selection of the applicants for a post is considered. There are \(N \) applicants with similar qualifications on an interview list. The applicants come in random order and their salary demands are distinct. Two managers, I and II, interview them one at a time. The aim of the manager is to obtain the applicant who demands minimal salary. When both managers want to accept the same candidate, then some rule of assignment to one of the managers is applied. Any candidate hired by a manager will accept the offer with some given probability. A candidate can be hired only at the moment of his appearance and can be accepted at that moment. At each moment \(n \) one candidate is presented. The considered problem is a generalization of the best choice problem with uncertain employment and its game version with priority or random priority. The general stopping game model is constructed. The algorithms of construction of the game value and the equilibrium strategies are given. An example is solved.

Key words. optimal stopping problem, game variant, Markov process, random priority, secretary problem

AMS Subject Classifications. 60G40, 62L15, 90D15.

1 Introduction

This paper deals with the mathematical model of competitive selection of the applicants for a post. There are \(N \) applicants of similar qualification on an interview list. The applicants come in a random order and their salary demands are distinct. Two managers, called Player 1 and Player 2, interview them one at a time. The aim of the manager is to obtain the applicant who demands minimal salary. When both managers want to accept the same candidate, then some rule of assignment
to one of the managers is applied. Any candidate hired by the manager will accept the offer of job with some given probability. A candidate can be hired only at the moment of his appearance and can be accepted at that moment. At each moment n one candidate is presented. The considered problem is related both to the uncertain employment considered by [12] and to the competitive optimal stopping problem with priority (see [4]) or more generally with random priority of the players (see [7], [14]).

Let us formulate the optimal stopping problem with uncertain employment considered by Smith [12] (see also [15]) in a rigorous way. Let a homogeneous Markov process $(X_n, \mathcal{F}_n, P_x)_{n=0}^N$ be defined on probability space (Ω, \mathcal{F}, P) with fixed state space (\mathbb{E}, B). Define the gain function $f : \mathbb{E} \to \mathfrak{R}$. Let \mathfrak{M}^N be a set of sequences $\bar{\mu} = \{\mu_n\}_{n=0}^N$ of $\{0, 1\}$-valued random variables such that μ_n is \mathcal{F}_n-measurable for every n. Let $\eta_n = \{\mu_n\}_{n=0}^N$ be a sequence of i.i.d. r.v. with the uniform distribution on $\{0, 1\}$, independent of $(X_n)_{n=0}^N$ and $\bar{\mu}$ and let $\alpha = \{\alpha_n\}_{n=0}^N$ be the sequence of real numbers, $\alpha_n \in [0, 1]$. Define $\tau_{\alpha}(\bar{\mu}) = \inf\{n \geq 0 : \mu_n = 1, \eta_n \leq \alpha_n\}$. In the optimal stopping problem with uncertain employment the aim is to find $\bar{\mu}^*$ such that

$$E_x f(X_{\tau_{\alpha}(\bar{\mu}^*)}) = \sup_{\bar{\mu} \in \mathfrak{M}^N} E_x f(X_{\tau_{\alpha}(\bar{\mu})}) \text{ for all } x \in \mathbb{E}$$

and to determine the function $v(x) = E_x f(X_{\tau_{\alpha}(\bar{\mu}^*)})$. We can look at the above problem as a problem of one decision-maker who wants to accept, on the basis of sequential observation, the most profitable state of the Markov process which appears in the realization but the solicited state is available with some probability only. The availability is unknown before solicitation. If the decision-maker has made an unsuccessful stop he can choose any next state under the same rules. The availability is described by the sequence α.

In a bilateral approach each player can get at most one of the states from the realization of the Markov chain. Since there is only one random sequence $\{X_n\}_{n=0}^N$ in a trial, at each instant n only one player can obtain a realization x_n of X_n. Both players together can accept at most two objects. The problem of assigning the objects to the players when both want to accept the same one can be solved in many ways. In [2] Dynkin assumed that for odd n Player 1 can choose x_n and for even n Player 2 can choose. Other authors solve the problem by more or less arbitrary definition of the payoff function. Sakaguchi [11] considered some version of the bilateral sequential games related to the no-information secretary problem with uncertain employment. The paper investigated the two-person non-zero-sum games with one or two sets of N objects under the conditions of the secretary problem. In the case of one set of objects it can happen that both players attempt to accept the same object. In this case players have half success which is taken into account in the payoff function. Another approach assumes a priority for one decision-maker (see papers by Sakaguchi [10], Enns & Ferenstein [3], Radzik & Szajowski [6], Ravindran & Szajowski [9]) or the random priority (the paper by Fushimi [5], Radzik & Szajowski [7] and Szajowski [14]).
The model of competitive choice of the required object with the uncertain employment and random priority has been formulated and preliminary results have been obtained by Szajowski [13]. At each moment n the state of the Markov process x_n is presented to both players. If the players have not already made an acceptance there are the following possibilities. If only one of them would like to accept the state then he tries to take it. In this moment a random mechanism assigns availability to the state (which can depend on the player and the moment of decision n).

Model A. This is the approach which has been considered by the authors in [8].

(i) If both of them are interested in this state then at first the random device chooses the player who will first solicit the state. The availability of the state is similar to the situation when only one player want to take it.

(ii) If a state is not available for the player chosen by the random device then the observed state at moment n is lost as in the case when both players reject it. The next state in the sequence is interviewed.

Model B. The model differs from **Model A** only in the case when both players would like to accept the same state. So that point (i) is the same.

If the random device chooses Player 1 and the state is not available for him (lottery decides about that) then the observed state at moment n is solicited by Player 2. The state is available for him as in the situation when only Player 2 tries to take it (the random experiment decides about it). If the state is not available then it is lost and the next state in the sequence is interviewed.

Model C. The model differs from **Model A** and **B** in the case when both players would like to accept the same state. This model admits that if the state is not available for the player chosen by the device then the other player is able to solicit the state.

Figure 1: The schemes of decision processes

![Decision Process Schemes](image)

Fig. 1 presents the scheme of the decision process in each model. The lottery P_L assigns the priority to the players. The random devices I_L and II_L describe
availability of the state to Player 1 and Player 2 respectively. In Model B there is a door between I_L and II_L which can be opened from the room I_L. In Model C the door handles are from both sides.

This paper deals with the extended model described in the point Model C. In Section 2 the formal description of a two-step random assignment is given. The algorithms solution of the game related to the model described in Section 2 is presented in Section 3. The examples are solved in Section 4.

2 Two-Step Random Assignment

Let $(X_n, F_n, P_n)_{n=0}^N$ be a homogeneous Markov chain defined on a probability space (Ω, F, P) with state space $\mathbb{E} \times \mathbb{E}$ and let $f_1 : \mathbb{E} \times \mathbb{E} \to \mathbb{R}$ and $f_2 : \mathbb{E} \times \mathbb{E} \to \mathbb{R}$ be $\mathcal{B} \times \mathcal{B}$ real-valued measurable functions. The horizon N is finite. Player i ($i \in \{1, 2\}$) observes the Markov chain and tries to maximize his payoff defined by the function f_i. Each realization x_n of X_n can be accepted by at most one player and neither player can accept more than one realization of the chain. It is assumed there is a lottery, which decides which player has priority when both players wish to accept the same realization. Also, it is assumed that if a player wishes to accept a realization x_n of X_n and has priority, then that player obtains that realization with some probability that is strictly non-zero and strictly less than one (i.e. uncertain employment). If a player has not accepted any of the previous realizations at stage n, then he has two options. The first is to solicit the observed state of the process, the second is to reject it. Once a player has accepted one of the realizations, then he no longer takes part in the game.

If both players wish to accept the same realization, then the lottery chooses which player has priority. Let $\{\epsilon_n\}_{n=0}^N, \{\alpha_n\}_{n=0}^N$ be the description of the lottery, where $\epsilon_i, i = 0, 1, \ldots, N$ are a sequence of i.i.d r.v.s from the $[0, 1]$ uniform distribution and the $\alpha_i, i = 0, 1, \ldots, N$ are real numbers, $\alpha_i \in [0, 1]$. When both players wish to accept the same realization x_n of X_n, then Player 1 has priority if $\epsilon_n \leq \alpha_n$, otherwise Player 2 has priority. Similarly, the lottery $\{(\eta^i_n)_{n=0}^N, \beta^i_n\}_{n=0}^N$ describes the availability of the n-th realization of the chain to the i-th player. When only Player 1 (Player 2) accepts state x (y) then Player 1 obtains $g_1(x) = \sup_{y \in \mathbb{E}} f_1(x, y)$ ($g_2(y) = \inf_{x \in \mathbb{E}} f_1(x, y)$) by assumption. Similarly, when only Player 1 (Player 2) accepts state x (y) then Player 2 obtains $g_3(x) = \inf_{y \in \mathbb{E}} f_2(x, y)$ ($g_4(x) = \sup_{x \in \mathbb{E}} f_2(x, y)$). If neither player accepts a realization, then they both gain 0.

Let Ω^n be the aggregation of sequences $\bar{\sigma} = \{\omega_n\}_{n=0}^N$ of $\{0, 1\}$-valued random variables such that ω_n is F_n-measurable, $n = 0, 1, \ldots, N$. If a player uses $\bar{\sigma}$, then $\sigma_n = 1$ means that he declares willingness to accept the realization x_n of X_n. If $\sigma_n = 0$, then the player is not interested in accepting the realization x_n. Denote $\Omega_k^n = \{\bar{\sigma} : \sigma_0 = 0, \sigma_1 = 0, \ldots, \sigma_{k-1} = 0\}$. Let Λ_k^n and Γ_k^n be copies of Ω_k^n ($\Omega^n = \bigcup_{k=0}^N$). One can define the sets of strategies $\Lambda^n = \{\lambda, \{\bar{\sigma}^n\} : \lambda \in \Lambda^n, \bar{\sigma}^n \in \Lambda_{n+1}^n \forall n\}$ and $\Gamma^n = \{\bar{\gamma}, \{\bar{\sigma}^n\} : \bar{\gamma} \in \Gamma^n, \bar{\sigma}^n \in \Gamma_{n+1}^n \forall n\}$ for Players 1
and 2 respectively. The strategies $\tilde{\lambda}$ and $\tilde{\gamma}$ are applied by Player 1 and Player 2 respectively, until the first of the two players has obtained one of the realizations of the Markov chain. After that point the other player, Player i say, continues alone using strategy $\tilde{\sigma}_i$, $i = 1, 2$.

Let $E_x f_1^+(X_n) < \infty$, $E_x f_1^-(X_n) < \infty$, $E_x f_2^+(X_m) < \infty$ and $E_x f_2^-(X_m) < \infty$ for $n, m = 0, 1, \ldots, N$ and $x \in \mathbb{F}$. Let $\psi \in \overline{\Lambda}^N$ and $\tau \in \overline{\Gamma}^N$. Based on the strategies ψ and τ used by Player 1 and Player 2 respectively, the definition of the lotteries and the type of model used, the expected gains $\overline{R}_{1, \bullet}(x, \psi, \tau)$ and $\overline{R}_{2, \bullet}(x, \psi, \tau)$ for Player 1 and Player 2 respectively can be obtained. In this way the form of the game $(\overline{\Lambda}^N, \overline{\Gamma}^N, \overline{R}_{1, \bullet}(x, \psi, \tau), \overline{R}_{2, \bullet}(x, \psi, \tau))$ is defined. This game is denoted by G^\bullet. For zero sum games the normal form of the game can be simply defined by $(\overline{\Lambda}^N, \overline{\Gamma}^N, \overline{R}_{1, \bullet}(x, \psi, \tau))$ since $\overline{R}_{1, \bullet}(x, \psi, \tau) = -\overline{R}_{2, \bullet}(x, \psi, \tau)$. The three models considered in the introduction are presented in the following section for both zero sum and non-zero sum games.

Definition 2.1. The pair (ψ^*, τ^*) is an equilibrium point in the game G^\bullet if for every $x \in \mathbb{F}$, $\psi \in \overline{\Lambda}^N$ and $\tau \in \overline{\Gamma}^N$ the following two inequalities hold

$$\overline{R}_{1, \bullet}(x, \psi, \tau^*) \leq \overline{R}_{1, \bullet}(x, \psi^*, \tau^*),$$

(1) $$\overline{R}_{2, \bullet}(x, \psi^*, \tau) \leq \overline{R}_{2, \bullet}(x, \psi^*, \tau^*).$$

(2)

In the particular case of zero-sum games, these conditions simplify to

$$\overline{R}_{1, \bullet}(x, \psi, \tau^*) \leq \overline{R}_{1, \bullet}(x, \psi^*, \tau^*) \leq \overline{R}_{1, \bullet}(x, \psi^*, \tau).$$

(3)

The aim is to construct equilibrium pairs (ψ^*, τ^*). After one of the players accepts realization x_n at time n, the other player tries to maximize his gain without any disturbance from the player choosing first, as in the optimal stopping problem with uncertain employment (see Smith [12]). Thus, if neither player has accepted a realization up to stage n, the players must take into account the potential danger from a future decision of the opponent, in order to decide whether or not to accept the realization x_n of X_n. In order to do this, they consider some auxiliary game G_{n}^\bullet.

Let $\psi = (\tilde{\lambda}, \{\tilde{\sigma}_n^1\})$ and $\tau = (\tilde{\gamma}, \{\tilde{\sigma}_n^2\})$. Define $s_0(x, y) = \beta_N^2 f_2(x, y) + (1 - \beta_N^2) g_3(x)$, $S_0(x, y) = \beta_N^1 f_1(x, y) + (1 - \beta_N^1) g_2(y)$ and

$$s_n(x, y) = \sup_{\tau \in \Gamma_{N-n}^N} E_x f_2(x, X_{\sigma(\tau, \beta^2)})$$

(4) $$S_n(x, y) = \sup_{s \in \Lambda_{N-n}^N} E_x f_1(X_{\sigma(\psi, \beta^1)}),$$

(5)

for all $x, y \in \mathbb{F}$, $n = 1, 2, \ldots, N$, where $\sigma(\psi, \beta^1) = \inf\{0 \leq n \leq N : \sigma_n^1 = 1, \eta_n^1 \leq \beta_n^1\}$ and $\sigma(\tau, \beta^2) = \inf\{0 \leq n \leq N : \sigma_n^2 = 1, \eta_n^2 \leq \beta_n^2\}$. By backward induction (see Bellman [1]), the functions $s_n(x, y)$ can be constructed as $s_n(x, y) =$
max{\beta_n^2 f_2(x, y) + (1 - \beta_n^2) T_2 s_{n-1}(x, y), T_2 s_{n-1}(x, y)} and the functions \(s_n(x, y) = \max\{\beta_n^1 f_1(x, y), (1 - \beta_n^1) T_1 s_{n-1}(x, y), T_1 s_{n-1}(x, y)\} \) respectively, where \(T_1 f(x, y) = E_y f(x, X_1) \) and \(T_2 f(x, y) = E_x f(X_1, x) \). The operations minimum, maximum, \(T_2 \) and \(T_1 \) all preserve measurability. Hence \(s_n(x, y) \) and \(S_n(x, y) \) are \(B \otimes B \) measurable. If Player 1 has obtained \(x \) at moment \(n \) and Player 2 has not yet obtained any realization, then the expected gain of Player 2 is given by \(h_2(n, x)(i \in \{1, 2\}) \), where

\[
h_2(n, x) = E_x s_{N-n-1}(x, X_1)
\]

for \(n = 0, 1, \ldots, N-1 \) and \(h_2(N, x) = g_3(x) \). Let the future expected reward of Player 1 in such a case be denoted \(h_1(n, x) \). If the game is a zero-sum game, then \(h_1(n, x) = -h_2(n, x) \).

When Player 2 is the first player to obtain a realization at time \(n \), then the expected gain of Player 1 is given by \(H_1(n, x) \), where

\[
H_1(n, x) = E_x s_{N-n-1}(X_1, x)
\]

for \(n = 0, 1, \ldots, N-1 \) and \(H_1(N, x) = g_2(x) \). Let the future expected reward of Player 2 in such a case be denoted by \(H_2(n, x) \). If the game is a zero-sum game, then \(H_2(n, x) = -H_1(n, x) \).

Based upon the solutions of the optimization problems when a player remains alone in the decision process, we can consider such an auxiliary game \(G_n^\star \). The form of this game depends on the model determining what happens when both players wish to accept the same state.

3 The Extended Model

Assume that the model deciding the priority assignment is Model C, as given in the introduction. The game related to Model C will be denoted \(G^C \). The sets of strategies available to Player 1 and Player 2 are \(\Lambda^N \) and \(\Gamma^N \) respectively. For \(\psi = (\psi, [\sigma_1^1]) \in \Lambda^N \) and \(\tau = (\tau, [\sigma_2^2]) \in \Gamma^N \), we define the following random variables

\[
\lambda_{\alpha, \beta^1, \beta^2}(\psi, \tau) = \inf\{0 \leq n \leq N : (\lambda_n = 1, \gamma_n = 1, \epsilon_n \leq \alpha_n, \eta_n^1 \leq \beta_n^1) \}
\]

or \((\lambda_n = 1, \gamma_n = 0, \eta_n^1 \leq \beta_n^1)\)

or \((\lambda_n = 1, \gamma_n = 1, \epsilon_n > \alpha_n, \eta_n^2 > \beta_n^2, \eta_n^1 \leq \beta_n^1)\),

\[
\gamma_{\alpha, \beta^1, \beta^2}(\psi, \tau) = \inf\{0 \leq n \leq N : (\lambda_n = 1, \gamma_n = 1, \epsilon_n > \alpha_n, \eta_n^2 \leq \beta_n^2) \}
\]

or \((\lambda_n = 0, \gamma_n = 1, \eta_n^2 \leq \beta_n^2)\)

or \((\lambda_n = 1, \gamma_n = 1, \epsilon_n \leq \alpha_n, \eta_n^1 > \beta_n^1, \eta_n^2 \leq \beta_n^2)\).
Let

$$\rho_1(\psi, \tau) = \lambda_{\alpha, \beta^1, \beta^2}(\psi, \tau) \mathbb{I}_{\{\gamma_{\alpha, \beta^1, \beta^2}(\psi, \tau) < \gamma_{\alpha, \beta^1, \beta^2}(\psi, \tau)\}}$$

$$+ \sigma_{\gamma_{\alpha, \beta^1, \beta^2}(\psi, \beta^1)}(\psi, \tau) \mathbb{I}_{\{\gamma_{\alpha, \beta^1, \beta^2}(\psi, \tau) > \gamma_{\alpha, \beta^1, \beta^2}(\psi, \tau)\}}$$

and

$$\rho_2(\psi, \tau) = \gamma_{\alpha, \beta^1, \beta^2}(\psi, \tau) \mathbb{I}_{\{\lambda_{\alpha, \beta^1, \beta^2}(\psi, \tau) > \gamma_{\alpha, \beta^1, \beta^2}(\psi, \tau)\}}$$

$$+ \sigma_{\gamma_{\alpha, \beta^1, \beta^2}(\psi, \beta^2)}(\psi, \tau) \mathbb{I}_{\{\lambda_{\alpha, \beta^1, \beta^2}(\psi, \tau) < \gamma_{\alpha, \beta^1, \beta^2}(\psi, \tau)\}}.$$}

We have

$$\overline{R}_{1,C}(x, \psi, \tau) = E_x f_1(X_{\rho_1}(\psi, \tau), X_{\rho_2}(\psi, \tau)),$$

$$\overline{R}_{2,C}(x, \psi, \tau) = E_x f_2(X_{\rho_1}(\psi, \tau), X_{\rho_2}(\psi, \tau)).$$

In the auxiliary game G^C_α, the sets of strategies available to Player 1 and Player 2 are Λ^N and Γ^N respectively. For $\overline{\lambda} \in \Lambda^N$ and $\overline{\gamma} \in \Gamma^N$ we define the random variables

$$\overline{\lambda}_{\alpha, \beta^1, \beta^2}(\overline{\lambda}, \overline{\gamma}) = \inf\{0 \leq n \leq N : (\lambda_n = 1, \gamma_n = 1, \epsilon_n \leq \alpha_n, \eta_n^1 \leq \beta_n^1)$$

or $(\lambda_n = 1, \gamma_n = 0, \eta_n^1 \leq \beta_n^1)$

or $(\lambda_n = 1, \gamma_n = 1, \epsilon_n > \alpha_n, \eta_n^2 > \beta_n^2, \eta_n^1 \leq \beta_n^1)$,

$$\overline{\gamma}_{\alpha, \beta^1, \beta^2}(\overline{\lambda}, \overline{\gamma}) = \inf\{0 \leq n \leq N : (\lambda_n = 1, \gamma_n = 1, \epsilon_n > \alpha_n, \eta_n^2 \leq \beta_n^2)$$

or $(\lambda_n = 0, \gamma_n = 1, \eta_n^2 \leq \beta_n^2)$

or $(\lambda_n = 1, \gamma_n = 1, \epsilon_n \leq \alpha_n, \eta_n^1 > \beta_n^1, \eta_n^2 \leq \beta_n^2)\}.$

As long as $\overline{\lambda}_{\alpha, \beta^1, \beta^2}(\overline{\lambda}, \overline{\gamma}) \leq N$ or $\overline{\gamma}_{\alpha, \beta^1, \beta^2}(\overline{\lambda}, \overline{\gamma}) \leq N$, the payoff function for the i-th player is defined as follows

$$r_i(\overline{\lambda}_{\alpha, \beta^1, \beta^2}(\overline{\lambda}, \overline{\gamma}), \overline{\gamma}_{\alpha, \beta^1, \beta^2}(\overline{\lambda}, \overline{\gamma})) = h_i(\overline{\lambda}_{\alpha, \beta^1, \beta^2}(\overline{\lambda}, \overline{\gamma}), \overline{\gamma}_{\alpha, \beta^1, \beta^2}(\overline{\lambda}, \overline{\gamma}))$$

$$\times \mathbb{I}_{\{\overline{\lambda}_{\alpha, \beta^1, \beta^2}(\overline{\lambda}, \overline{\gamma}) < \overline{\gamma}_{\alpha, \beta^1, \beta^2}(\overline{\lambda}, \overline{\gamma})\}}$$

$$+ H_i(\overline{\gamma}_{\alpha, \beta^1, \beta^2}(\overline{\lambda}, \overline{\gamma}), \overline{\gamma}_{\alpha, \beta^1, \beta^2}(\overline{\lambda}, \overline{\gamma}))$$

$$\times \mathbb{I}_{\{\overline{\lambda}_{\alpha, \beta^1, \beta^2}(\overline{\lambda}, \overline{\gamma}) \geq \overline{\gamma}_{\alpha, \beta^1, \beta^2}(\overline{\lambda}, \overline{\gamma})\}}$$

otherwise the payoff to each player is 0.
Firstly, we consider zero sum games. As a solution to such a game, we look for an equilibrium pair \((\bar{\lambda}^*, \bar{\gamma}^*)\) such that

\[
R(x, \bar{\lambda}_{\alpha, \beta^1, \beta^2}(\bar{\lambda}, \bar{\gamma}^*), \bar{\gamma}_{\alpha, \beta^1, \beta^2}(\bar{\lambda}, \bar{\gamma}^*)) \leq R(x, \bar{\lambda}_{\alpha, \beta^1, \beta^2}(\bar{\lambda}^*, \bar{\gamma}^*), \bar{\gamma}_{\alpha, \beta^1, \beta^2}(\bar{\lambda}^*, \bar{\gamma}^*)) \\
\leq R(x, \bar{\lambda}_{\alpha, \beta^1, \beta^2}(\bar{\lambda}^*, \bar{\gamma}), \bar{\gamma}_{\alpha, \beta^1, \beta^2}(\bar{\lambda}^*, \bar{\gamma}))
\]

(9)

for all \(x \in \mathbb{E}\), where

\[
R(x, \bar{\lambda}_{\alpha, \beta^1, \beta^2}(\bar{\lambda}, \bar{\gamma}), \bar{\gamma}_{\alpha, \beta^1, \beta^2}(\bar{\lambda}, \bar{\gamma})) = E_x r_1(\bar{\lambda}_{\alpha, \beta^1, \beta^2}(\bar{\lambda}, \bar{\gamma}), \bar{\gamma}_{\alpha, \beta^1, \beta^2}(\bar{\lambda}, \bar{\gamma})).
\]

As in Model A, we can define a sequence \(v_n(x), n = 0, 1, \ldots, N + 1\) on \(\mathbb{E}\) by setting \(v_{N+1}(x) = 0\) and

\[
v_n(x) = \text{val} \begin{bmatrix}
\alpha_n(\beta_n^1 h_1(n, x) + (1 - \beta_n^1)g(n, x, \beta_n^2)) & G(n, x, \beta_n^1) \\
+ (1 - \alpha_n)(\beta_n^2 H_1(n, x) + (1 - \beta_n^2)G(n, x, \beta_n^1)) & T v_{n+1}(x)
\end{bmatrix}
\]

(10)

for \(n = 0, 1, \ldots, N\), where \(G(n, x, \beta_n^1) = \beta_n^1 h_1(n, x) + (1 - \beta_n^1)T v_{n+1}(x)\) and \(g(n, x, \beta_n^2) = \beta_n^2 H_1(n, x) + (1 - \beta_n^2)T v_{n+1}(x)\). By subtracting \(T v_{n+1}(x)\) from each entry above, it can be seen that the game above is equivalent to a game with matrix \(A\), where

\[
A = \begin{bmatrix}
\alpha_a & \alpha_b \\
\alpha_c & \alpha_d
\end{bmatrix} = \begin{bmatrix}
\alpha(a + (1 - \beta)b) & a \\
+(1 - \alpha)(b + (1 - \gamma)a) & b
\end{bmatrix}
\]

(11)

where \(a, b, \alpha, \beta, \gamma\) are real numbers and \(\alpha, \beta, \gamma \in [0, 1]\). By direct checking we obtain

Lemma 3.1. The two-person zero-sum game with payoff matrix \(A\) given above has an equilibrium point \((\epsilon, \delta)\) in pure strategies, where

\[
(\epsilon, \delta) = \begin{cases}
(s, s) & \text{if } (1 - (1 - \alpha)\gamma)a \geq \alpha\beta b \cap (1 - \alpha\beta)b \leq (1 - \alpha)\gamma a, \\
(s, f) & \text{if } a \geq 0 \cap (1 - \alpha\beta)b > (1 - \alpha)\gamma a, \\
(f, s) & \text{if } b \leq 0 \cap (1 - (1 - \alpha)\gamma)a < \alpha\beta b, \\
(f, f) & \text{if } a < 0 \cap b > 0.
\end{cases}
\]

(12)
Denote
\[A_n^{ss} = \{ x \in \mathbb{E} : (1 - (1 - \alpha_n)\beta_n^2)(h_1(n, x) - T v_{n+1}(x)) \geq \alpha_n \beta_n^2 (H_1(n, x) - T v_{n+1}(x)), (1 - \alpha_n^1)(H_1(n, x) - T v_{n+1}(x)) \leq (1 - \alpha_n) \beta_n^1 (h_1(n, x) - T v_{n+1}(x)) \} \]
\[A_n^{sf} = \{ x \in \mathbb{E} : h_1(n, x) \geq T v_{n+1}(x), (1 - \alpha_n^1)(H_1(n, x) - T v_{n+1}(x)) \geq (1 - \alpha_n) \beta_n^1 (h_1(n, x) - T v_{n+1}(x)) \} \]
\[A_n^{fs} = \{ x \in \mathbb{E} : H_1(n, x) \leq T v_{n+1}(x), (1 - (1 - \alpha_n)\beta_n^2)(h_1(n, x) - T v_{n+1}(x)) < \alpha_n \beta_n^2 (H_1(n, x) - T v_{n+1}(x)) \} \]

and
\[A_n^{ff} = \mathbb{E}(A_n^{ss} \cup A_n^{sf} \cup A_n^{fs}) \]

By the definition of the sets \(A_n^{ss}, A_n^{sf}, A_n^{fs} \in \mathcal{B} \) and Lemma 3.1 we have
\[v_n(x) = [\alpha_n(\beta_n^1(h_1(n, x) - T v_{n+1}(x)) + (1 - \beta_n^1)\beta_n^2(H_1(n, x) - T v_{n+1}(x))) + (1 - \alpha_n)(\beta_n^2(h_1(n, x) - T v_{n+1}(x)))]_A^{ss}(x) + \beta_n^1(h_1(n, x) - T v_{n+1}(x))_A^{sf}(x) + \beta_n^2(H_1(n, x) - T v_{n+1}(x))_A^{fs}(x) + T v_{n+1}(x). \]

Define
\[\lambda_n^* = \begin{cases} 1 & \text{if } X_n \in A_n^{ss} \cup A_n^{sf}, \\ 0 & \text{otherwise.} \end{cases} \]
\[\gamma_n^* = \begin{cases} 1 & \text{if } X_n \in A_n^{ss} \cup A_n^{fs}, \\ 0 & \text{otherwise.} \end{cases} \]

The stopping times \(\lambda_n^* \) and \(\gamma_n^* \) are defined by Equations (18) and (19) with the appropriate \(A_n^* \) given by Equations (13)–(16).

Theorem 3.1. Game \(G_A^C \) with payoff function (8) and sets of strategies \(\Lambda^N \) and \(\Gamma^N \) available to Player 1 and Player 2 respectively, has an equilibrium pair (\(\lambda^*, \gamma^* \)) defined by Equations (18) and (19), based on (13)–(16). The value of the game to Player 1 is \(v_0(x) \).
Now we construct an equilibrium pair \((\psi^*, \tau^*)\) for game \(G^C\). Let \((\bar{\lambda}^*, \bar{\gamma}^*)\) be an equilibrium point in \(G^C_2\).

Define (see [12] and [15])

\[
\sigma^1_{n,m} = \begin{cases}
1 & \text{if } S_{N-m}(X_m, X_n) = f(X_m, X_n), \\
0 & \text{if } S_{N-m}(X_m, X_n) > f(X_m, X_n)
\end{cases}
\]
(20)

\[
\sigma^2_{n,m} = \begin{cases}
1 & \text{if } S_{N-m}(X_n, X_m) = f(X_n, X_m), \\
0 & \text{if } S_{N-m}(X_n, X_m) > f(X_n, X_m)
\end{cases}
\]
(21)

Theorem 3.2. Game \(G^C\) has a solution. The equilibrium point is \((\psi^*, \tau^*)\), such that \(\psi^* = (\bar{\lambda}^*, \{\bar{\sigma}^1_n\})\) and \(\tau^* = (\bar{\gamma}^*, \{\bar{\sigma}^2_n\})\). \((\bar{\lambda}^*, \bar{\gamma}^*)\) is an equilibrium point in \(G^C_2\) and the strategies \(\{\bar{\sigma}^1_n\}\) and \(\{\bar{\sigma}^2_n\}\) are defined by Equations (20) and (21) respectively. The value of the game is \(v_0(x)\), where \(v_n(x)\) is given by Equation (17).

Now we consider non-zero sum games. In this case we must search for an equilibrium pair such that

\[
R_1(x, \bar{\lambda}, \bar{\gamma}, \bar{\alpha}, \bar{\beta}) \leq R_1(x, \bar{\lambda}, \bar{\gamma}, \bar{\alpha}, \bar{\beta})
\]

\[
R_2(x, \bar{\lambda}, \bar{\gamma}, \bar{\alpha}, \bar{\beta}) \leq R_2(x, \bar{\lambda}, \bar{\gamma}, \bar{\alpha}, \bar{\beta})
\]

Let \(v_1(x) (v_2(x))\) be the value of this game to the first (second) player on observing the realization \(x\). The payoff matrix for player 1 is of the same form as the matrix given in Equation (10), except that \(v_1(x)\) replaces \(v_n(x)\). \(a, b, \alpha, \beta, \gamma\) are defined as before from the matrix given in Equation (11). The payoff matrix for the second player has the form

\[
\begin{bmatrix}
\alpha_n (\beta_n^1 h_2(n, x) + (1 - \beta_n^1) g(n, x, \beta_n^2)) & g(n, x, \beta_n^2) \\
+ (1 - \alpha_n) (\beta_n^1 h_2(n, x) + (1 - \beta_n^2) G(n, x, \beta_n^1)) & G(n, x, \beta_n^1) \\
Tv_{n+1}(x)
\end{bmatrix}
\]
(22)

Subtracting \(Tv_{n+1}(x)\) this matrix is equivalent to one of the form

\[
A = \begin{bmatrix}
a_{ss} & a_{sc} \\
a_{cs} & a_{cc}
\end{bmatrix}
\begin{bmatrix}
\alpha(a_2 + (1 - \beta) b_2) & b_2 \\
+ (1 - \alpha)(b_2 + (1 - \gamma) a_2) & a_2
\end{bmatrix}
\]
(23)
By direct checking we have

Lemma 3.2. The two-person game with payoff matrices given by (11) and (23) has an equilibrium point in pure strategies given by \((\epsilon, \delta)\), where

\[
(\epsilon, \delta) = \begin{cases}
(s, s) & \text{if } (1 - (1 - \alpha)\gamma)a \geq \alpha\beta b \cap (1 - \alpha\beta)b_2 \geq \gamma a_2(1 - \alpha), \\
(s, f) & \text{if } a \geq 0 \cap (1 - \alpha\beta)b_2 < \gamma a_2(1 - \alpha), \\
(f, s) & \text{if } (1 - (1 - \alpha)\gamma)a < \alpha\beta b \cap b_2 \geq 0, \\
(f, f) & \text{if } a < 0 \cap b_2 < 0.
\end{cases}
\]

(24)

There is not necessarily a unique pure equilibrium in the game.

4 Example

In all the games considered we assume that an applicant accepts a job offer from Player 1 with probability \(r_1\). If both players wish to accept an applicant, then Player 1 has priority with probability \(p\), otherwise Player 2 has priority. If an applicant rejects an offer from the player with priority, that applicant then accepts the offer from the other player with the appropriate probability. The aim of each player is to employ the best applicant. Thus, the players should only accept applicants, who are the best seen so far (such applicants will be henceforth known as candidates). We obtain asymptotic results for a large number \(N\) of applicants. Let \(t\) be the proportion of applicants already seen. \(t\) will be referred to as the time.

In order to find the equilibrium strategies in the game, we first need to calculate the optimal strategy of a lone searcher. Let \(U_i(t)\) be the probability that Player \(i\) obtains the best candidate, given that he/she is searching alone at time \(t\). A player should accept a candidate at time \(t\), iff \(t \geq U_i(t)\). Smith [12] shows that

\[
U_i(t) = \begin{cases}
\frac{r_i}{1 - r_i} (t^{r_i} - t) & t_i \leq t \leq 1, \\
t_i & 0 \leq t < t_i,
\end{cases}
\]

where \(t_i = r_i^{1/(1 - r_i)}\) satisfies \(t_i = U_i(t_i)\). Player \(i\)'s optimal strategy is to accept a candidate, iff \(t \geq t_i\).

Example 4.1. Zero-sum game model

In this case it is assumed that a player’s payoff is 1 if he/she obtains the best candidate, – 1 if the other player obtains the best candidate and 0 otherwise. Define \(k_i\) to be the probability that Player \(i\) obtains a candidate when both players wish to accept that candidate. It follows that \(k_1 = r_1[p + (1 - p)(1 - r_2)]\) and \(k_2 = r_2[(1 - p) + p(1 - r_1)]\). Define \(k_3\) to be the probability that neither player obtains a candidate, when both players wish to accept a candidate. Hence, \(k_3 = (1 - r_1)(1 - r_2)\). Let \(w(t)\) be the expected value of the game to Player 1 when both of the players are still searching at time \(t\). Thus \(w(0)\) is the value of the game
to Player 1. The payoff matrix on the appearance of a candidate for this game is given by

\[
\begin{pmatrix}
 k_1[t - U_2(t)] + k_2[U_1(t) - t] + k_3 w(t) & r_1[t - U_2(t)] + (1 - r_1)w(t) \\
 r_2[U_1(t) - t] + (1 - r_2)w(t) & w(t)
\end{pmatrix}.
\]

Rows 1 and 2 (Columns 1 and 2) give the appropriate payoffs when Player 1 (Player 2) accepts and rejects a candidate respectively. The game is solved by recursion. For large \(t \) both of the players accept a candidate at a Nash equilibrium. From the form of the payoff matrix, both players accepting a candidate forms a Nash equilibrium when the following inequalities are satisfied

\[
 r_2[U_1(t) - t] + (1 - r_2)w(t) \leq k_1[t - U_2(t)] + k_2[U_1(t) - t] + k_3 w(t) \\
 \leq r_1[t - U_2(t)] + (1 - r_1)w(t).
\]

Suppose it is stable for both players to accept a candidate if \(t \geq t_{2,2} \). Considering the distribution of the arrival time of the next candidate, it can be shown that

\[
w(t) = \int_t^1 \frac{t}{s^2} [k_1[s - U_2(s)] + k_2[U_1(s) - s] + k_3 w(s)] ds.
\]

Dividing by \(t \) and differentiating

\[
w'(t) - \frac{(1 - k_3)w(t)}{t} = \frac{k_1}{t^2} [U_2(t) - t] + \frac{k_2}{t^2} [t - U_1(t)].
\]

Together with the boundary condition \(w(1) = 0 \), this gives

\[
w(t) = C_1 t^{1-k_3} + C_2 t + C_3 t^r + C_4 t^r^2,
\]

where \(C_3 = k_2 r_1 / r_2 (1 - r_1)^2 \), \(C_4 = k_1 r_2 / r_1 (1 - r_2)^2 \) and

\[
C_1 = \frac{(1 - k_3)[k_1 r_2 (1 - r_1) - k_2 r_1 (1 - r_2)]}{r_1 r_2 (1 - r_1)^2 (1 - r_2)^2},
\]

\[
C_2 = \frac{k_2 (1 - r_2) - k_1 (1 - r_1)}{(1 - r_1)^2 (1 - r_2)^2}.
\]

In the case \(r_1 = r_2 = r \) this simplifies to

\[
w(t) = \frac{r^2 (2p - 1)}{(1 - r)^3} [r((2 - r)t^{r(2-r)} - 1) - (1 - r)t^r]. \tag{25}
\]

In this case (here \(t_2 = t_1 \)), from the symmetry of the game it suffices to consider \(p \geq 0.5 \). Intuitively, for \(p > 0.5 \) Player 1 should be the more choosy of the two
players. Hence, in this case we look for a Nash equilibrium of the form

\[(\phi^*, \tau^*) = \begin{cases}
(a, a) & t \geq t_{2,2}, \\
(r, a) & t_{2,1} \leq t < t_{2,2}, \\
r, r & t < t_{2,1}.
\end{cases}\]

From the arguments presented above, it follows that \(t_{2,2}\) satisfies

\[1 + (2p - 1)r[t_{2,2} - U_1(t_{2,2})] = (1 - r)w(t_{2,2}). \tag{26}\]

It follows from Equation (25) that \(w(t) > 0\) for \(t \in [t_{2,2}, 1]\). Hence, it can be seen that for \(p > 0.5, t_{2,2} > t_1\). For \(p = 0.5\), \(w(t) = 0\) on this interval and hence \(t_{2,2} = t_1\). In this particular case it is simple to show that for \(t < t_1\) both players reject a candidate at a Nash equilibrium. In the more general case, the relation between \(t_{2,2}\) and the optimal thresholds for a lone searchers are not so clear and so, henceforth, results are given only in the case \(r_1 = r_2\). However, the method of solution in the general case is similar.

It can be shown that for \(p > 0.5\) and \(t_{2,1} < t < t_{2,2}\)

\[w'(t) - \frac{pw(t)}{t} = \frac{p}{l}[t - U_1(t)].\]

It should be noted here that \(U_1(t)\) changes form at \(t = t_1\). Considering the payoff matrix \(t_{2,1}\) satisfies \(w(t_{2,1}) = U(t_{2,1}) - t_{2,1}\). For \(t_1 \leq t \leq t_{2,2}\)

\[W(t) = C_5t^p - \frac{pt^p \ln(t)}{1 - p} + \frac{pt}{(1 - p)^2},\]

where \(C_5\) is calculated from the boundary condition at \(t_{2,2}\). Since \(w(t) > 0\) on this interval, it follows that \(t_{2,1} < t_1\). On the interval \([t_{2,1}, t_1]\), we have

\[w(t) = C_6t^p + t_1 + \frac{pt}{1 - p},\]

where \(C_6\) is calculated from the boundary condition at \(t_1\). For \(t \leq t_{2,1}\) the value function \(w(t)\) is constant. Table 1 gives results for \(p = 1\) (Player 1 always has priority) and various values of \(r\).

<table>
<thead>
<tr>
<th>(r)</th>
<th>(t_{2,1})</th>
<th>(t_{2,2})</th>
<th>(w(0))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.2139</td>
<td>0.2710</td>
<td>0.0571</td>
</tr>
<tr>
<td>0.6</td>
<td>0.2342</td>
<td>0.2995</td>
<td>0.0652</td>
</tr>
<tr>
<td>0.7</td>
<td>0.2512</td>
<td>0.3229</td>
<td>0.0716</td>
</tr>
<tr>
<td>0.8</td>
<td>0.2654</td>
<td>0.3419</td>
<td>0.0764</td>
</tr>
<tr>
<td>0.9</td>
<td>0.2771</td>
<td>0.3568</td>
<td>0.0797</td>
</tr>
<tr>
<td>0.95</td>
<td>0.2821</td>
<td>0.3628</td>
<td>0.0807</td>
</tr>
</tbody>
</table>
REFERENCES

